Growth changes of the musculoskeletal system Children fracture healing and remodeling

Dr KL Liu Department of Orthopaedics and Traumatology PWH

Agenda

 Basic Principles in Fracture Healing and Remodeling

Non Accidental Injury

Principles of Treatment Options

Epidemiology of children fracture

•	1 Distal radius fracture	20.2%
•	2 Supracondylar humeral	17.9%
•	3 Forearm shaft	14.9%
•	4 Tibial Shaft	11.9%
•	5 Fingers & hand	4.9%
•	6 Lateral condyle	4.8%
•	7 Femoral shaft	4.6%
•	8 Ankle	3.1%
•	9 Proximal radius (head & neck)	2.9%
•	10 Humeral shaft	2.8%
•	11 Medial Condyle humeral	2.5%
•	12 Olecranon	1.7%
•	13 Distal radius epiphyseal	1.7%
•	14 Elbow dislocation	0.8%
•	15 Rarities	5.4%

Review of 6493 fractures JCY Cheng et al JPO 19:344-350 1999

Chilren ≠ Small adult

Chilren ≠ **Small adult** Bone quality Periosteum Ligament Growth plate

Bone

Higher collagen to bone ratio in paediatric bone

 Lower modulus of elasticity (less brittle) and higher ultimate strain to failure ratio than adult

Plastic Deformation

- Fixed bending remains when bone deformed past elastic limit
- Most commonly in forearm, fibula
- Periosteum intact and thus usually no periosteal callus
- Permanent deformity can
 result

(A) directimpactperpendicularto the axis ofthe long bone:

-periosteal stripping on convex side of the fracture: greenstick fracture

Greenstick fracture

Plastic Deformation

(B) longitudinal
 compression – impact
 parallel to the axis of the
 long bone results in
 incomplete fractures

(1) bowing (plastic deformity)

Plastic Deformation

- Remodeling not as reliable
- Significant curvature should be corrected
- General anesthesia
- Considerable force
- Slowly applied over a padded fulcrum

Comminuted fracture uncommon

-Higher cellular and porous

- Reduce tensile strength
- Reduce the tendency of fractures to propagates

Bone

–Bone fails in both tension and compression

 Mechanism of buckle fracture in children

Bone

–Bone transitions

 Between the metaphysis and diaphysis cause a mechanical discontinuity leading to certain fracture types

Buckle or Torus Fracture

- Compression failure
- Stable
- Usually at metaphyseal / diaphyseal junction

Bone-Blood Supply

-The blood supply is different

 a rich metaphyseal circulation with fine capillary loops ending at the physis

 In neonate, small vessels may transverse the physis and end in epiphysis

Periosteum

- Periosteum in children is thicker and stronger
 - -Offer additional resistance to shear force
 - Little displacement, help in reduction

Greenstick Fractures

- Bending mechanism
- Failure on tension side
- Incomplete fracture, plastic deformation on compression side
- May need to complete fracture to realign

Ligaments

 Ligaments in children are functionally stronger than bone

-Force that procedure sprains in adults result in fracture in children

Physeal Fractures

normal cartilage growth plate

 Traditionally believed to occur primarily through ZONE Of -hypertrophy

 Some fractures may traverse more than one zone

Growth plate

The physis is weaker than bone in torsion, shear and bending
Potential for remodeling
Growth plate injury causes deformity

Physeal fractures

- Salter-Harris classification
 - I # across physis
 - II # across physis and metaphysis
 - III # across part of physis & epiphysis
 - IV # across metaphysis, physis & epiphysis
 - V crush injury of physis without fracture
 - VI Perichondral ring injury

Salter-Harris VI

Physeal fracture

Type I

Transphyseal fracture involving the hypertrophic and calcified zones
Prognosis is excellent, although complete or partial growth arrest may occur in displaced fracture

- Type II
 - Transphyseal fracture that exits the metaphysis
 - The metaphyseal fragment is call Thurston Holland fragment
 - The periosteal hinge is intact on the side with metaphyseal fragment
 - Prognosis is excellent, although complete or partial growth arrest may occur in displaced fracture

Type III

- Exits the epiphysis, causing intra-articular disruption
- anatomic reduction and fixation without violating the physis are essential
- Prognosis is guarded, partial growth arrest and angular deformity are common

Type IV

- Transverse epiphysis, physis and metaphysis
- anatomic reduction and fixation without violating the physis are essential
- Prognosis is guarded, partial growth arrest and angular deformity are common

Type V Diagnosis is generally made retrospectively Prognosis is poor growth arrest and partial physeal closure common

Growth Arrest Secondary to Physeal Injury

- Complete cessation → limb length discrepancy
- Partial cessation
 > angular deformity if peripheral
- →progressive shortening if central

Epiphysis or Apophysis?

- Epiphysis forces are compressive on physeal plate
- Apophysis forces are tensile
- Histologically
 distinct

Apophyseal Injuries

- Tibial tubercle
- Medial Epicondyle
- May be preceded by chronic injury/repetitive processes

Non-accidental injury

Radiographic Findings in NAI

Radiographic Findings in NAI

- Fracture pattern not specific (spiral, transverse, etc.)
- Metaphyseal Corner # or Bucket Handle #
- Multiple fractures at different stages of healing highly specific

- Humerus diaphyseal # < 3 yo are almost always associated with NAI
- Femur # < 1 yo are usually due to NAI
- Risk or re-abuse is 35% and risk of death 5-10%

Metaphyseal Corner # or Bucket Handle

- Pathognomonic of NAI
- Traction/rotation
 mechanism of injury

 Planar fracture through primary spongiosa

DDX: NAI

Accidental trauma/Birth trauma

Osteogenesis Imperfecta

- Metabolic Bone Disease (rickets, etc.)
- Physiologic periostitis

Management

General Principles

- Acute Fracture Care
 - immobilization of joints above and below
 - provides comfort, reduces deformity, reduces risk of additional injury

 cast or splint depending on anticipated swelling & compartment syndrome

Post-fracture care

 Post-fracture Care

 F/U to ensure union & restoration of alignment and length

Special Considerations

- Open fracture
- Compartment Syndrome
- Pathologic Fracture
 - tumors e.g. osteosarcoma
 - hereditary diseases e.g. osteogenesis imperfecta
 - metabolic diseases e.g. rickets
 - neuromuscular diseases e.g. Muscular Dystrophy
 - infectious diseases e.g. osteomyelitis

Treatment options

Most upper limb #- 90/90 elevation

Most Lower limb # Back slab

Treatment of minimal / Un-displaced #

Completely Displaced Fractures

Closed/ Open Reduction + K-wire Fiation + Casting

Excellent remodelling power

Tibial Shaft, Wedging Works Beautifully !

Traction Principle

 Traction produces a reduction through the surrounding soft parts which align the fragments by their tension.

Purpose

*Regain normal length and alignment of involved bone

- *Reduce and immobilize a fractured bone
- *Lessen or eliminate muscle spasms
- *Relieve pressure on nerves, especially spinal
- *Prevent or reduce skeletal deformities or muscle contractures

Mechanism of traction

- Every force has an equal and opposite force
- Applied in different ways
 - -Fixed traction with a splint
 - -Fixed traction using gravity
 - -Sliding traction
 - Balanced traction

Classification

- Defined by force
 - Traction by gravity
 - Skin traction
 - Skeletal traction

- Defined by configuration
 - Fixed traction
 - Balance traction
 - Combined traction

A: Traction by Gravity

B: Fixed skin traction

C: Balanced skin traction

D: Russell skin traction

E: Skeletal traction with splint + knee flexion piece

d

Skin traction

• 12 lb (5kg) is the upper limit

Skeletal Traction

- Max. 18kg(40lb) can be used
- Allow joint motion exercise
- Useful for femur fracture in paediatric

TIBIAL TRACTION – RIGHT AND WRONG

External fixation

Flexible and Rigid Intramedullary Nail

Compression plating

Children ≠ Small Adult

